Today’s Solutions: January 13, 2025

Coastal wastewater treatment plants may be a nasty but necessary way to handle the effluent from our cities, but a new study by Stanford University indicates that they could also double as power plants to make them energy independent and carbon neutral. By mixing freshwater from the plants with seawater, the researchers say they have the potential to recover 18 gigawatts of electricity worldwide.

This is because when freshwater and saltwater mix, it produces what is called a salinity gradient. In the case of wastewater coming out of a treatment plant, the discharge contains 20 times less salt than the seawater it mixes with. Skipping over a lot of chemical details, what this means is that every cubic meter of freshwater can theoretically produce a little bit of energy. Since plants are continually discharging freshwater into the sea after treatment, capturing this energy and using it to power these energy-intensive wastewater treatment plants would be huge for the environment.

After all, running these wastewater plants takes up three percent of the electrical power output in the US alone.

Solutions News Source Print this article
More of Today's Solutions

How to protect and soothe skin from smoke exposure

In light of the recent devastating wildfires in Los Angeles County, we felt it was timely to revisit this important piece. As wildfires become ...

Read More

Tired of virtual meetings? Here’s how to overcome ‘Zoom fatigue’

If you’re anything like us at the Optimist Daily, you’re probably feeling exhausted by virtual meetings. We spoke about it amongst ourselves while on ...

Read More

AI exposes coral reefs “singing”

Coral reefs are essential to ocean ecosystems, providing food and homes to all sorts of organisms. Learning as much as possible about these living ...

Read More

Mummified mammoth accidentally discovered in northern Canada

Paleontology and archaeology can sometimes get a helping hand in unexpected places. A gold miner in Northern Canada was digging through the permafrost and ...

Read More