Today’s Solutions: January 22, 2025

The possibilities of 3D printing seem to have no bound after scientists at the University of Minnesota managed to 3D print a human heart pump capable of beating on its own.

The pump is just 1.5 centimeters long, but the researchers believe the tiny organoid could have a huge impact on efforts to treat heart disease, the leading cause of death in the US. To create their heart pump, the UMN researchers started with human pluripotent stem cells, which are capable of developing into any kind of cell in the human body.

They added those cells to a bioink, then used a special 3D printer to shape their tiny organoid. That process took less than five minutes, according to their paper, published in the journal Circulation Research. (Though the research, of course, had taken years.)

Next, they waited two weeks for the stem cells to multiply. Once the cells reached the perfect density, the researchers prompted them to evolve into heart muscle cells. Less than a month later, the researchers’ heart pump was functioning.

“I couldn’t believe it when we looked at the dish in the lab and saw the whole thing contracting spontaneously and synchronously and able to move fluid,” lead researcher Brenda Ogle, head of UMN’s Department of Biomedical Engineering The key to their breakthrough, according to Ogle, was waiting until after printing to turn the cells into heart muscles — in previous attempts, they had developed the stem cells into heart cells before printing, and they never multiplied to the right density.

“After years of research, we were ready to give up and then two of my biomedical engineering Ph.D. students, Molly Kupfer and Wei-Han Lin, suggested we try printing the stem cells first,” she said. “We decided to give it one last try.”

The heart pump is nowhere near as complex as a fully developed human heart — it’s essentially two tubes leading into and out of a dual-chambered sac — but that’s enough to make it useful for research. “We now have a model to track and trace what is happening at the cell and molecular level in (a) pump structure that begins to approximate the human heart,” Ogle said. “We can introduce disease and damage to the model and then study the effects of medicines and other therapeutics.”

Solutions News Source Print this article
More of Today's Solutions

FDA finally pulls the plug on Red Dye No. 3 in food

BY THE OPTIMIST DAILY EDITORIAL TEAM After decades of debate, the U.S. Food and Drug Administration (FDA) has banned Red Dye No. 3 from ...

Read More

How to spot early signs of frailty and build strength for the long run

BY THE OPTIMIST DAILY EDITORIAL TEAM Frailty may seem like an inevitable part of getting older, but it’s actually a diagnosable medical condition that ...

Read More

Everything you need to know about tea tree oil

Essential oil aficionados have long touted the many benefits of tea tree oil. On top of giving off a clean and calming scent for ...

Read More

Pittsburgh will become a dark sky city in 2022

Anyone who lives in a big city knows that stars are a rare sight due to light pollution, but that may soon change in ...

Read More