Today’s Solutions: November 02, 2024

Improving the way current batteries store and deliver power is key to enabling faster charging and enhanced performance of electronic devices. However, the structural composition of most batteries today prevents the rapid transport of electrons and ions, limiting power density.

Scientists have been trying to overcome this hurdle by using the structural components of a battery to store energy. Using the same principles, a team of scientists at the University of Pennsylvania has recently created a microbattery light enough to be carried by insects that can store up to four times the energy density as a result.

The research was spurred after the scientists decided to investigate new designs for compact and durable batteries to power increasingly small wearables and electronic devices. These batteries require protection from the elements to keep running, but this usually involves casings that only add to their weight and size, without improving their power performance.

The team created the energy-efficient microbattery by essentially reimagining the way tiny batteries are typically designed. As explained by New Atlas, these devices usually feature ultra-thin electrodes that allow electrons and ions to travel fast, but this slim profile limits the number of chemicals they can contain, thus restricting the amount of energy they can pack up.

As such, the team redesigned the battery’s cathode, which is typically made of crushed particles compressed together in a way that creates a porous make-up with air gaps, which influences the speed ions can move through the battery.

For the new mircobattery, the scientists used a much denser cathode material that could be “electroplated” directly onto thin metal foils, which also act as the casing — thus enabling the battery’s packaging to also store energy. “We essentially made current collectors that perform double duty,” says study leader James Pikul. “They act as both an electron conductor and as the packaging that prevents water and oxygen from getting into the battery.”

The resulting microbattery showed a record energy density four times that of the current state-of-the-art designs. While the tiny battery doesn’t weigh more than two grains of rice, it has the energy density of a battery 100 times its size, making it ideal for a number of applications, including tiny flying robots, wearables, or the increasing number of devices that make up the Internet of Things.

Study source: Advanced MaterialsA Nearly Packaging-Free Design Paradigm for Light, Powerful, and Energy-Dense Primary Microbatteries

Solutions News Source Print this article
More of Today's Solutions

This heartwarming Danish ad breaks down the ‘Us vs Them’ narrative

It’s rare that we publish a story about an advertisement, but then again it’s rare that an ad stirs so much emotion within its ...

Read More

NOAHs: Charlotte has a formula for long-lasting affordable housing

We recently shared how empty retail space could be the solution to California’s affordable housing crisis. Across the country in North Carolina, the city ...

Read More

A seat at the table for underrepresented communities

Climate change is already affecting all of us—however, those that bear the brunt of these consequences are predominantly from low-income, marginalized, BIPOC communities. So ...

Read More

Expanding democracy: Michigan opens new doors for formerly incarcerated voters

Malijah Gee's path from incarceration at the age of 17 to imminent freedom reflects the longing for a voice that has been suppressed for 36 years. ...

Read More