Today’s Solutions: January 22, 2025

Professor Samuel I. Stupp of Northwestern University led a breakthrough study that reversed paralysis and repaired grave spinal cord injuries in mice. Just four weeks after receiving a single injection of the novel treatment, the mice remarkably regained their ability to walk.

“Our research aims to find a therapy that can prevent individuals from becoming paralyzed after major trauma or disease,” Professor Stupp explained. “For decades, this has remained a major challenge for scientists because our body’s central nervous system, which includes the brain and spinal cord, does not have any significant capacity to repair itself after injury or after the onset of degenerative disease.”

The treatment consists of the injection of a liquid that immediately forms a network of nanofibers that match the structure around the spinal cord. The challenge from this point forward is communicating with the body’s cells.

“Receptors in neurons and other cells constantly move around,” Stupp said. The novel treatment is able to mimic the structure of tissue around the spinal cord and then match the motion of the cellular receptors, making it more likely for the injected molecules to come into contact with the moving receptors at a higher rate.

“The key innovation in our research, which has never been done before, is to control the collective motion of more than 100,000 molecules within our nanofibers,” Stupp added. “By making the molecules move, ‘dance’ or even leap temporarily out of these structures, known as supramolecular polymers, they are able to connect more effectively with receptors.”

Once connected with the receptors, the injected molecules send two signals that begin the repair process within the body. More positive effects of the treatment include scar tissue being reduced and myelin, the insulation that surrounds axons, being reformed. The materials in the therapy biodegrade into nutrients within 12 weeks of injection. These nutrients are absorbed by the cells, completely disappearing from the body with no reported side effects.

The success of this preliminary trial with mice sparks has made the team hopes to start human trials in the near future. “We are going straight to the FDA [the United States Food and Drug Administration] to start the process of getting this new therapy approved for use in human patients, who currently have very few treatment options,” said Stupp.

The team also believes that this type of therapy can be fine-tuned to treat other conditions such as Parkinson’s disease and Alzheimer’s.

Solutions News Source Print this article
More of Today's Solutions

Oslo’s quiet revolution: how electric construction sites are changing the game

BY THE OPTIMIST DAILY EDITORIAL TEAM Imagine walking past a bustling construction site and hearing… almost nothing. In Oslo, that’s becoming the new normal. ...

Read More

DIY toothpaste: a simple, eco-friendly guide to sparkling teeth

BY THE OPTIMIST DAILY EDITORIAL TEAM Are you tired of reaching for the same old toothpaste tube every morning? Making your own toothpaste not ...

Read More

The Rockefeller Christmas Tree gets a charitable new life after the holidays

We once shared how a tiny owl was rescued from the branches of the Rockefeller Christmas Tree. Now we have more good news as ...

Read More

Robot fish repairs itself with microplastics it collects

Microplastics are one of the most pervasive environmental and health issues of our time. And environmental engineers and researchers are working nonstop to address ...

Read More