Today’s Solutions: December 22, 2024

When a complex problem like organ damage arises, the solution generally comes from a wide range of experts. Scientists from McGill University combined knowledge of biology, chemistry, physics, and engineering to come up with a cutting edge technique in regenerative medicine.

The group invented a new biomaterial in the form of an injectable hydrogel. The way it works is by acting like a porous scaffold, leaving room for cells to grow upon it and the individual’s own cells to repair the injured organ.

In a statement released from the university, Guangyu Bao, a Ph.D. candidate in the Department of Mechanical Engineering said, “People recovering from heart damage often face a long and tricky journey. Healing is challenging because of the constant movement tissues must withstand as the heartbeats. The same is true for vocal cords. Until now there was no injectable material strong enough for the job.”

Material vs. machine

During the research process, the team, led by professor Luc Mongeau and assistant professor Jianyu Li, tested their creative innovation against a biomechanical simulation. Recreating the action and movement of the human vocal cord was essential to ensure the hydrogel could hold up against the rigorous movements it carries out.

“We were incredibly excited to see it worked perfectly in our test. Before our work, no injectable hydrogels possessed both high porosity and toughness at the same time. To solve this issue, we introduced a pore-forming polymer to our formula,” stated Bao.

Wide ranging applications

The treatment, published in Advanced Science, could be the solution to save lives from heart failure, an extremely common cause of death worldwide. This hydrogel could also improve people’s quality of life, for example restoring the voice of survivors of laryngeal cancer with damaged vocal cords.

The applications don’t stop there. There is immense potential for using this novel material in creating model tissues for the laboratory. In many stages of medical research, animals or humans have to be used to test the safety and effectiveness of drugs. This new biomaterial has the potential to replace or reduce these steps. The team is already looking into possible uses of the technology to test Covid-19 drugs on synthetic lung structures.

The next step for this biomaterial is to test it out in a clinical setting.

Source study: Advanced ScienceInjectable, Pore-Forming, Perfusable Double-Network Hydrogels Resilient to Extreme Biomechanical Stimulations

Solutions News Source Print this article
More of Today's Solutions

UK aims to tackle drink spiking to protect women and girls

BY THE OPTIMIST DAILY EDITORIAL TEAM The UK government announced a game-changing move to tackle spiking, a crime that has haunted nightlife and endangered ...

Read More

These 8 tips will help reduce holiday cooking stress

BY THE OPTIMIST DAILY EDITORIAL TEAM Spice up your holiday cooking with these eight helpful and stress-reducing tips and savor the true joy of ...

Read More

How ketamine can help fight depression

Quick acting aid A recent review from the University of Exeter, has shown that the sedative drug ketamine, has therapeutic effects in regards to ...

Read More

Oregon project lets farmers test drive electric tractors

American drivers have plenty of options when it comes to electric cars, but what about farmers? The electrification of the agricultural industry is a ...

Read More