Today’s Solutions: November 22, 2024

The possibilities of 3D printing seem to have no bound after scientists at the University of Minnesota managed to 3D print a human heart pump capable of beating on its own.

The pump is just 1.5 centimeters long, but the researchers believe the tiny organoid could have a huge impact on efforts to treat heart disease, the leading cause of death in the US. To create their heart pump, the UMN researchers started with human pluripotent stem cells, which are capable of developing into any kind of cell in the human body.

They added those cells to a bioink, then used a special 3D printer to shape their tiny organoid. That process took less than five minutes, according to their paper, published in the journal Circulation Research. (Though the research, of course, had taken years.)

Next, they waited two weeks for the stem cells to multiply. Once the cells reached the perfect density, the researchers prompted them to evolve into heart muscle cells. Less than a month later, the researchers’ heart pump was functioning.

“I couldn’t believe it when we looked at the dish in the lab and saw the whole thing contracting spontaneously and synchronously and able to move fluid,” lead researcher Brenda Ogle, head of UMN’s Department of Biomedical Engineering The key to their breakthrough, according to Ogle, was waiting until after printing to turn the cells into heart muscles — in previous attempts, they had developed the stem cells into heart cells before printing, and they never multiplied to the right density.

“After years of research, we were ready to give up and then two of my biomedical engineering Ph.D. students, Molly Kupfer and Wei-Han Lin, suggested we try printing the stem cells first,” she said. “We decided to give it one last try.”

The heart pump is nowhere near as complex as a fully developed human heart — it’s essentially two tubes leading into and out of a dual-chambered sac — but that’s enough to make it useful for research. “We now have a model to track and trace what is happening at the cell and molecular level in (a) pump structure that begins to approximate the human heart,” Ogle said. “We can introduce disease and damage to the model and then study the effects of medicines and other therapeutics.”

Solutions News Source Print this article
More of Today's Solutions

This Canadian didn’t want to fly from Germany to Canada—so he took a cargo ship

When Will Vibert’s European work visa was closing in on its expiration date, the Canadian was reluctant to travel back to Vancouver via plane. ...

Read More

Simple movement is connected to better brain health in older adults

It goes without saying that practicing regular exercise offers plentiful benefits for our overall health, but as we age, engaging in the same exercise ...

Read More

Passive cooling techniques reduce AC strain by up to 80 percent

In the summer months, many of us are of two minds: we’re dying to keep it cool, but we’re also dying not to spend ...

Read More

Making windows bird-friendly: a crash course on protecting our feathered friends

In 1990, Michael Mesure was on the way to a wildlife rehabilitation center. Among his passengers was a common yellowthroat, a colorful warbler that ...

Read More